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Statistics of transmitted power in multichannel dissipative ergodic structures
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We use the random matrix theof®MT) to study the probability distribution function and moments of the
wave power transmitted inside systems with ergodic wave motion. The results describe either open multichan-
nel systems or their closed counterparts with local-in-space internal dissipation. We concentrate on the regime
of broken time-reversal invariance and employ two different analytical approaches: the exact supersymmetry
method and a simpler technique that uses RMT eigenstatistics for closed nondissipative systems as an input.
The results of the supersymmetric method were confirmed by numerical simulation. The simpler method is
found to be adequate for closed systems with uniform dissipation, or in the limit of a large number of weak
local dampers.
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[. INTRODUCTION powerT transmitted between a source at siend a receiver
at sitej in a closed system with internal losses. The statistics
Transport through open chaotic systems is often viewedf T are potentially useful for studies of power transmission
as a scattering process. Standard examples of systems of tii@tcomplex reverberant structurgs2—14, where both the
kind are compound nuclei, mesoscopic quantum dots anfnean power and the magnitude of its fluctuations away from
wires, microwave cavities, and acoustic or ultrasonic bodieghe mean are important. In particular, we wish to calculate
[1-12] Incident waves are introduced into a disordered orthe averageT and T# with the ultimate goal of comparing
iregularly shaped part of the structure via channels, e.gWith measurements such as those of Re2|. The complex
waveguides, or infinitely long ideal leads. Assuming negli-2mplitude of the transmitted wave is simply proportional to
gible dissipation, transport properties are obtained by relatthe off-diagonal matrix element of the resolver@(E)
ing incident and outgoing wave fields in terms of the unitary=[El+iel =H+il']"*. HereH corresponds to the Hamil-
scattering matriS. If internal dissipation is not negligible, it tonian of the closed nondissipative chaotic structure. The
can be simulated by the action of additional open channelg'atrix I' describes coupling to external channels or internal
[9]. This is the case, for example, with microwave cavitieslocal-in-space losses,is the identity matrix, the parameter
where nonperfectly reflecting walls cause loss of wave ens>0 describes uniform dissipation, arielis the spectral
ergy or with ultrasonic solids where internal friction acts in variable. The quantity of prime interest &=|G;;(E)|?,
the bulk[8,9,12. i#j, i.e., the product of retarded and advanced Green func-
The scattering model thus applies to open systems bottions (propagators Gf(E)=[El+izl —H+iT'];;* and G}
with and without internal dissipation. The scattering ap—=(Gﬁ(E))*, respectively. Except for the slowly varying
proach provides a useful tool for statistical characterizatiorfactors of receiver gain and source strength, the quantity
of chaotic transport. Assuming the wave dynamics inside thd represents the ultrasonic power of R¢12]; see also
system to be ergodic so that the entire phase space of th&0-13.
system is explored2—6], the scattering approach is com-  The fluctuations inT, as measured in Ref12], were in
bined with a statistical analysis based on random matribonly modest agreement with theoretical predictions based on
theory (RMT). For systems without losses, one can makea simplified version of the random matrix approach. The mo-
assumptions on the statistics of tBenatrix[2,11]. An alter-  ments of T were calculated there using a naive form of en-
native method uses a random matrix assumption on the levekemble averaging8,12—14. This relatively simple approach
of the wave equation associated with the closed nondissipatses statistical assumptions for eigenfunctions and the real
tive structure. Here the basic object is the Green functiorparts of eigenvalues of the open system identical to those of
(resolvent related to that wave equation, and the methodthe corresponding closed system. As will be seen later, such
works equally well in both open and closed, dissipative andan assumption is strictly justified only for a special case of
nondissipative complex structurfs—10,13. Matrices from  uniform dissipation. In a more general situation this ap-
a random matrix ensemble then replace the wave equationfsoach fails. A proper treatment calls for a more elaborate
linear differential operator, and the problem of constructingtechnique, which we outline and present below.
various moments of the transport characteristics is expressed When losses are negligible the systems discussed in Refs.
in terms of ensemble averages of the products of the resof]42-14 are invariant under time reversal. The appropriate
vents. Transport characteristics calculated in that way arehoice for the corresponding random matrxshould there-
known, under certain conditions, to describe the results ofore be a real symmetric matrix taken, e.g., from the Gauss-
experimental measurements in systems with ergodic wavian orthogonal ensembl@OE). In principle, the powerful
motion [1—-6]. methods of ensemble averaging we employ here can be used
In this paper we are interested in characterizing the wavéor such an ensemble, but the calculations are technically
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involved and will be presented in a separate publication. II. PROBABILITY DISTRIBUTION FUNCTION OF THE
Here we address ourselves to the somewhat simpler case =~ POWER. SUPERSYMMETRIC CALCULATION
in which H is complex Hermitian, generic for systems with

. . . ; . In the previous section we defined the powess a prod-
broken time-reversal invariance. Correspondinghy, is P b P

treated Hermitiahi X N i it f uct of advanced and retarded Green functiGas Our goal
reated as a Hermitia malrix consisting of uncorre-- ;o compute the statistics, i.e., ensemble averages

lated centered random complex numbers, their variances d?T) (TZ) etc., where subscrigti designates averaging
H» H» "

fined by<HiJHrm>:(7‘2/N)fSil5jm with angular brackets in-ip'the Gaussian weight ekp (N/2\2) Tr HTH}. At the first
d|cat|ng ensemble averaging. Suchidris a membgr of the stage of the supersymmetric calculation we make use of the
Gaussian unitary ensemb{€UE) of rando.m.matnceil]. following identities for the inverse propagatdy;=[E+ie
Although our present results on the statisticsTo&re not —H+iT]; [3,4,20-23

directly applicable to the time-reversal invariant systems dis- A )

cussed in[12-14, they may elucidate the discrepancies

found in Ref.[12] between measurements and the predic- det@ﬁlzf [dS'][dS]exp{i £,(E,S)},

tions of the “naive” averaging. They also develop and illus-

trate the mathematical methods which will be used for a

proper nonperturbative analysis of the time-reversal- det@f:(_l)NJ [dx*1[dx]expi £+(E, x)}.

invariant problem. The present calculations are also relevant

for scattering systems with broken time-reversal invariance4ere we introduced M-dimensional vectorsS™=(S],S])

as exemplified in certain chaotic billiards], optical and  gng yT=(yT yI), consisting of complex commuting or
semiconductor superlattic¢s5], and quantum graphd6].  posonic (b) variables and anticommuting or fermioni€)

In fact, our results on the distribution of theff-diagonal variables, respectively. i)b:diag{D,—D*} and D
elements of the resolvent extend earlier studies concentrate_ddiag{D,DT} are 2NX2N block diagonal matrices, and
on diagonal entries for the same quantitgee[17,18 and Eb(E,S)=ST©bS, Ef(E’X):XTQfX- The negative sign of
references thereinLet us finally mention that there exists.a 22 js necessary for convergence of the integrals in what
clear analogy between our research and that presented in t Slows. Differentiating the first equality with respect@%jli

paper[19] (see also the reviey20]). However, the model . )
considered in[19,20 did not take local dampers into ac- and E)g'zl and th.en combining the result with the second
ﬁaquallty, we obtain

count, but rather addressed effects of Anderson localizatio
The damping matrixd” is in general Hermitian positive
semidefinite. In our model there is no loss of generality inngﬁlgﬁ‘lzf [dDT][dP]S];S;i S5 S, expli £(E, @)},
assuming it to be diagonal. Indeed, in view of the rotational )
invariance of the Gaussian unitary ensemble,
H—UHU *(U '=U"), we can always select a basis thatwhere the integration involves four-component supervectors
diagonalizes I', bringing it into the form T ®T=(S",x"), and where £(E,S)=£y(E,S)+L(E,x)
=diagy,7, ...,7.0,....,G. The numbeM <N of nonzero  =¢'Dd, D=diagD,,D;} [3,4,20-23. Because the ran-
entries can be interpreted either as a number of equivalerRfom matrixH is in the exponentT is now suitable for en-
open channels in the scattering sys{&,9 or as a number semble averaging.
of equivalent localized “dampers” in a closed system with  |n a similar fashion, employing the Wick theorem one can
losses. While we take all the's to be equal, the expressions yerify the following formula necessary for the calculation of

we develop are easily generalized to the case of varyingn arbitrary moment of transmitted POWER"); :
damper strengths. It should be stressed that in general the

matricesI” andH do not commute, and therefore the eigen- _ ,
vectors and eigenvalues of the “effective non-Hermitian 1 = (') zj [dPTI[d]S}"S];S5"S; expfi £(E, @)}
Hamiltonian” H—iI" are not trivially related to those df.
This very fact makes the naive averaging incorrect. In con- :<S’fjn 2i$in82j>lb- 2
trast, the termel interpreted as the “uniform damping” pre-
serves eigenvectors &f and just adds a uniform shift to
all eigenvalues.

The presence of aN XN random HamiltoniarH in the

The shorthand notatiof: - - )¢ has been introduced for the
“Gaussian” integration over the supervector components.
Hereafter we use the more convenidit?2] (“retarded-
expression for the resolvent mati&enables us to carry out advanced) block notation for supervectors and superrrT1atri—
the ensemble averaging exactly using the supersymmet§FS (TseeT, fgr eTxampIe, RefA]). With the supervectot
method [3,4,20-23. Application of this nonperturbative —(Si:X1,S2,x2) and the 44 supermatrices =diag1,1,
technique leads to an expression for the entire probability” 1.1, A=diag{1,1,~1,~1}, the exponent in the integrand
distribution function ofT. We present the corresponding deri- 'eads:

vation in Sec. Il. In Sec. Ill, we compare the results for the I S ot
first two moments off as obtained using the supersymmetry LEW=E¥ (leL)¥+IVI(I'eAL)¥-¥ (HoL)¥

method and the methods of Refd2-14. The results are +ieWTI®AL)W,
then verified numerically by direct simulation of the model.
Section IV contains conclusions. and Eq.(2) becomes
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T'=(n) X F [Py, FIVI=S}SiS5S;. (3

The ensemble averaging can now be performed with the

aid of the identitieg4]

1
(exp{ivT(H ®L)‘I’})H=exp[ - mStrAzl :
N
Ape = Lidpp 2y (YDRY DL,

StrAL=YT(1oLY2ALY) T =¥T(1e AL)W¥,

where we have set=1 and introduced a %4 supermatrix
A and Str stands for the supertrace. Thus

<T”>H:(n!)’zf [d‘IfT][d\If]F“[\If]exp(iElPT(l®L)‘I’
— VT oAL)Y - %StrAz—s StrAL] , (4)

wherek,| distinguish between retarded and advancednd
2) supermatrix block indices and,q are equal tob or f

PHYSICAL REVIEW E8, 016204 (2003

J [dW [ [ (W)W ])P(W))2(])°]"exp{ —iw T W}
Setting f=LYA(—El,®1 —Re1—iA®T)LY? we inte-
grate out the components 8f with the help of Eq.(7):

(T”}HZJ [dRIF"[&]exp{ —NL[R]+ 8L}, (8

where

FI8]=®12p0®21h0. 6= —Eli—R,
1
L[R]= EStrR2+ Strin(—El4—R),

8L=ieNStrRA—M StrinI,—iyA(—El,—R)"1].

See Appendix A for the detalils.

(T")y is now written as an integral over thex4 super-
matrix R. The stationarity condition foC[R], in the limit
of large N, yields a stationary pointRg, satisfying
Rs=1/(—EIl;—Ry). The solution is not unique, it is a saddle
manifold in a space of %4 supermatrices, spanned
by  “pseudounitary”  supermatrices T:Rg=—El4/2

[4,21]. The next stages of the supersymmetric procedure in+imv3T *AT=—El/2— 7vQ, wherev= J4—E?/(2) is
clude[1,3,4,20-23 (1) the Hubbard-Stratonovich transfor- Wigner’s semicircular mean density of eigenvalU&UE,

mation, which removes quartiin W) term in the exponen-

tial; (2) ¥ variable integration; and3) evaluation of the

remaining integral using the saddle point approximation in

the limit N—«. We have, after step 1,

N
(T"y=(n! )*Zf [d R]exp{ — EStrRz‘JrieN StrRA

+i StrRA f[d\p*][dqf]F”[wp]exp{i[EwTLw
+ivH(TeAL)¥]). (5)

Since StRA=YTLY2RLY2Y | for an arbitrary 4 4 super-
matrix R,

N
(T”>H=(n!)‘2f [dR]exp[ - EStrR2+isN StrRA

xf [d¥T[dV]F ¥ ]exp—iPw L2
X(—El@ly—Rely—iAe)LY2p), (6)

Using the Gaussian nature of the integral

J[d\IfT][d\If]exp[—i\PTf\If}:Sdetf‘l,

A=1). See Refs[4,21] for the explicit form of the super-
matrix Q.

After integrating out local fluctuations over directioRs
orthogonal to the manifold of stationary pointéhe proce-
dure is asymptotically exact for lard¢) the remaining inte-
gration goes over the manifold parametrized@y

E
<Tn>H:(7TV)2nf [dQI(Q12ppQ21pp)"Sdet™™ |4+|§7’A

+imvyQA |exp{—iemvN StrQA}. 9)

The expression for thath moment of power allows one
to find the entire distribution functioR(T) (cf. [19-21)):

P(T)= j [dQIS(T— (71)?Q12ppQ21pp) Y(Q),
or, for the “scaled” powery="T/(7v)?,
P(Y):f [dQJS(Y —~ Q12pbQ21pp) Y(Q), (10

where

E
Y(Q)=Sdet M| 1,+i EyA-l—iﬂ'V"yQA exp

X{—iemvN StrQA}.

the following general relation can be derived similarly to Evaluation of the superintegral in E¢LO) is presented in

Eq. (3):

Appendix A. The result reduces to
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Ply)=5(y)+ d + d* fwdx fl dN,8(y+1—\?) )\"{—)\3 pl—e(Ai—Np)} 9+ Az
y y dy ydy2 QOh) e y 1()\1_)\2)2 €(A17A2 9+,
d d? exp{—ey1+ 1 VI+y+a
=50ty P eyl dkz#exp{dz}(gﬂ\z)w (11)
dy “dy?)2Vi+y(g+Vi+y)MI-1 T 1+y—2,

whereg=(1/y+ y)/(27v) ande=2mvNe.
Setting the “uniform damping’e to zero we were able to evaluate the remaining integral expli@te Appendix A for the
detail9 and Eq.(11) yielded

{@-D" = (g+ D" ps+{(g+ D" 1+ (g- D" p,

Py)= 8V(1+y)*(g+V1+y)M*? |
9(y—2)
P= () L9 (M 2Nyl =(y+ D2+ (M+ 1) (y+2)], (12

P2=2(y+1)[g+(M+2)y1+y].

Equations(11) and (12) constitute the main result of this (M+1) _— -
section. P(Y)~4(M—+3),2{(9+1) =(g-pMth
At this point it is interesting to observe that E42) can y

in fact be used to cover the case of uniform damping in a 1
closed systeme>0, M=0. For this we note that in the limit +0| ———7 ], (15)
vy—0 (i.e.,g~1/2rvy—) andM—co but yM ~const the yM+4)

factor (@+\,)M/(g+X)M in the integrand of Eq(11) is
converted to exf2mryM(A\,—\,)}. Such a replacement is +1)/2. At the same time, as follows from E€L1), any

equivalent to generating an effective uniform dampiag onzeroe guarantees the existence of all moments. For large

=2mvyM. The fact that the large number of weakly openy, the asymptotic forms of the probability distribution func-
channels(or weak local-in-space damperss essentially  tion at nonzerce are

equivalent to uniform damping is well knowsee, e.g.[4]).

which shows that the momenty") exist only forn<(M

Performing the limitg—o,M— while keeping the prod- esinhe U
uct 2vyM = € finite, we find that the distribution Eq12) P(y)~ & exp{—ey'3, (16)
is reduced to y
gMeX _ Ey1/2}
Py) exp{—eV1+y}sinhe P(Y)N%’ (17)
y)= [ 5
dev(1ry) for M=0 and for finiteM, respectively.
X[e2(y+1)(y+2)—(y—2)(1+eV1+y)] Finally, we want to compare the results of this section
with numerical solution of the model RMT problem. For this
exp{ —ey1+y}coshe(l+eyl+y) goal we numerically generate an ensemblé&NofN Hermit-
+ P NEEE . (13  jan random matrice#, typically choosing 1500 samples
(1+y) from the ensemble and=1000. The entries of the matrkt

are constructed using a random number generator, with
This distribution of transmitted power for systems with uni- (HijH¥ )= (1IN) 8, 8;rn. To simulate the uniform damping

form damping is interesting and important on its own. and the case of a finite number of local dampers we fake
Let us consider now a few other regimes. For the weakly=¢| and I'=diagy,v, ...,.0,...,Q (with M<N non-

damped system\ is fixed,g>1), Eq.(12) can be approxi- zero entrieg respectively. Then, for all members of our en-

mated by semble we generate the off-diagonal elements of the resol-

vent matrix G;(E)=[EI+il—H] ', modeling the
4+y ( ) responsle at sitedue to excitation at sitg with E being the
P(y)~ ——=+0| —=|. 14 spectral parameter.
V) 4\(1+y)° 9° (49 We first consider the case of uniform dampidg=el.
The modal density for such a system is approximated by
The asymptotic behavior gP(y) in the limit y—o for  Wigner's semicircular lawy=\4—E?/(2). Therefore, for
any M andg is given by a fixed size of the matricds and spectral variablE, we can
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il (a)

P(y)

FIG. 1. Probability distribution functiofiEq. (11)] and histo-
grams of power fofa) e=1.0, (h) e=2.0, (c) e=4.0, (d) €=6.0, >
as obtained numerically. Data are scaled to unit area. For each plot
1500 samples 0|fGij(E)|2,i #], were computed. Deviations from
theory show no particular trend and have magnitudes consistent
with a priori known statistical fluctuations.

. _ FIG. 2. Probability distribution functiofiEg. (12)] and histo-
explore the range oé by changings. For E=0 the modal grams of power for@ M=2,g=2.16, (b) M=6,g=2.16, (c) M

density isy=1/7 and so we need not distinguish between  Z 404_400, (1) M=40g=40, (6 M=400g=400, (f) M
andy. In Fig. 1, the numerically obtained histograms are_ 400g=40. Data are scaled to unit area. For each plot 1500

compared withiP(y) (Eq. (11)) for several values 0. We  samples ofG;;(E)|? were computed. We imposed the restrictions
see that numerical results correspond well with the theoretir+j andi>M,j>M for the nonuniform damping case, to avoid

cal curves. . ~ ‘“recording” the response from damped sites or from the “source”
This procedure was repeated for the damping mdirix sitej, and to correspond to the assumptions in the theoretical analy-
=diag{y,7, .. .,7.0,...,¢ with M nonzero entries, by sis. Note that for large values gf[plots (c) and (e)], P(y) is not

computingG;;(E=0) for different combinations of param- sensitive to eitheg or M [Eq. (14)]. Deviations from theory show
etersM andg. The results are presented in Fig. 2. Again, theno particular trend and have magnitudes consistent witbriori
predictions of the supersymmetry method agree well with thénown statistical fluctuations.
numerical results.

(lu[)?

2:
Ill. MOMENTS OF POWER (Y)(7v) Z’ (E—E,—ie)(E—E,+ig)’

In this section we analyze the first two moments of powerrhe summation over the eigenenerdigds then replaced by
y using two different approaches, both based on the RMTan integral £, —Nv[dE,)

These moments as obtained using the supersymmetric calcu-

lation [Egs. (11) and (12)] will be compared to those ob- RUBAES (Nv)dE,

tained using the naive approach. We first consider uniform (y)= (71)2) - (E—E,—ie)(E—E,+ie)’
damping and thei # 0.

In the simpler, but inexact, approa@; is constructed as where y=\/4—E2/(27) is the GUE modal density. There-

a modal sum, fore, in the uniform damping case, the naive procedure pro-
LU duces
Gij(E)=2 == (lu|®»? o 2 2
 E—E,—i¢ _ N2/ 2\ 2 _=
roe (y) WV(WV)Z =N o= (19

and then averaged using the eigenstatistics of the undamped ) o

GUE system. Here' is therth eigenmode and we call the where(|u|®) has been set to W/ (by normalizatio. _

imaginary part, of the eigenenergg, the resonance width. 1 he second moment of power is calculated in Appendix B
We first consider the case whépis uniform, {,=¢, for Py means of the same approach, and is given by

all r [12]: 1

2\ +
5 uirujr* um™ ;n v mIN3ed  4ntuiNtet
Y= 2 e T E—Erie (19
rom rle mT1e X[1+8m?(Nv)2e?—exp —4mNve)]. (20
On averaging Eq(18) over the eigenmodes’, and assum- For the uniform damping cas€ (=« for all modes, ap-
ing they are uncorrelatedy) becomes plication of the results of Sec. Il is especially straightfor-
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ward. As already discussed, EG1) shows that in our model (a)
this case is realized either by settilg=0 with finite e or by 1
letting M be large andy be small, such thagM is finite. One N
can use Eq(13) for this purpose, but it is more convenient to > 0
start with the first part of Eq11). SettingM =0 and intro- a
ducing .
-1
f fwd)\ fl dA,8(y+1-2\2) S
= +1- 5 1 2 3 4 5 6
Y TS WL e
Xexpl—e(A;—N\y)}, 4
q 6( 1 2)} (b)
we integrate by parts in Eql1): A2
d d? %
PY)I=oy)+| gy ty o |h 5 o
dy?
% -2
(y">=f y"P(y)dy i 2 3 4 5 &6
0 €
T FIG. 3. (8 In{y) and (b) In{(y? plotted as functions of the pa-
=—y"(nf+yfy)lg+n J y" dy rametere for the case of uniform damping. The solid lines represent
0 theoretical predictiongEgs.(19) and(20)]. The 1o error bars were
% computed based on the observed variancegaridy?.
=n f ynt (21) N . o
distribution function of scaled power is given by Ed.2)

and closed form expressions for the mean valug afd its
Integration with respect ty in Eq. (21) eliminates the§  variance are cumbersome. It is, therefore, reasonable to carry

function, and gives out the corresponding integrations numerically. In contrast,
the naive averaging, which now also includes integration
+Ap| 2 over the resonance widtls, distributed[1,8] according to
(y)= J dA J dXzexpl— e(hy— 2)}( 2) - a x? distribution
22 M-1
r) ram\r r)’

1
1+-),
€

o 4 8
<y2>=4f ySdy=— (1—exp{—2e}H)+ — _ _ _

0 € € wherel is the mean resonance width, produces a relatively
(23 compact answer for the statistics pfsee Appendix B

which takes the same form as E@%9) and (20) upon sub-

stitution of 27vNe for e. Thus, for uniform damping, the (y)(mp)? (771/)2 VR (24)
“naive” and supersymmetric methods agree, for bdth

and(y?). This is not unexpected, because uniform damping AM?

with M =0 leaves eigenstatistics identical to those of closed (y?)= f(em M),

_ _ 2
systems, merely shifting all eigenenergiesiby The results (M=2)(M=1)ey

(22) and (23) can readily be reproduced by usif®{y) as
given by Eq.(13). These moments are plotted in Fig. 3 to-  f(¢,, M)=2+ AMM—1) M(4Mey—4en—M)
gether with the results of numerical simulations. The first (M=3)ey (2|\/|—3)62M
two moments ofy were obtained numerically, by inverting 4
matrix EI+iI'—H for each member of the ensemble. More _ (em*+M)
precisely, we computed the column vec®j (E) (j is fixed, M?(2M — 3)6%,,
i=1,...N) by solving the algebraic equation&l+iI’

H]GIJ &, for a fixed value ofE. Repeating this proce- Wwhereey = 2mvNT. We note that they? distribution for ¢,
dure 1500 times and averaging over the ensembld ahd s strictly correct only for the case d@f much less than the
over theN—1 values ofi #j, we obtainedy) and(y?) for ~ mean level distance. It does, however, correspond well with
€=1,2,4,6. As seen in Fig. 3, the correspondence is excethe actual distributiofi4] for more arbitrary values df, as
lent. long asM is large.

Our next goal is to calculatéy) and(y?) for the system In order to compare Eq$24) and(25) to corresponding
with M equivalent dampers and without additional uniform results obtained by numerical integration of Ef2), it is

damping(i.e., with e=0). For this problem the probability necessary to establish holv is related to the parameters

4—2M
+ M (25)
M 1

016204-6



STATISTICS OF TRANSMITTED POWER IN . .. PHYSICAL REVIEW E8, 016204 (2003

FIG. 4. Iny) plotted as a func-
tion of mean scaled widthy for
different numbers of channel&)
M=6; (b) M=8; (c) M=40; (d)
M=400. Here we computed
G”(EZO) (|7é] and |>M,J
>M) for fixed i andj and aver-
2 agedy over 1500 samples from
(d) the ensemble of. The naive av-
eraging prediction(solid line is
compared to the prediction by the
supersymmetry method(dotted
line). The 1o error bars were
computed based on the observed
variance ofy.

1n<y>
o

2 4 6 8 10 2 4 6 8 10
¥ e

N, M, andg of the supersymmetric calculation. By defini- for the mean scaled resonance width, whire1/vN is the
tion, the mean scaled resonance width in open systems [§€an eigenenergy spacing apgis the coupling constant of
proportional to the product of modal densityand average the ath channel. Note that our definitions of and eigen-
resonance widthl [4]. Under the condition of uniform Width £ are different by a factor of 2 from the notation of
damping, the eigenmodes are equally damped, and the lattg€f. [4]. For the uniformly damped system we find
quantity is just equal to the individual damper strengthn
general, the relationship is not that simple and is given by the

N
i ) 1 127ve+1
Moldauer-Simonius formul§4] - - —
=5 za In Tomye—1 2mveN=cg, (27
T 1 Oat1
=2my=2Nvrl'=3 ; NG =1 which was also shown at the end of Sec. Il. Thus, we con-

clude that our parameter coincides with the mean scaled
resonance width in the limit of a large number of equivalent
weak channels. Moreover, the parametgrin Eqgs.(24) and

1 /1
=—|—+7al, 26 _
Ja ( )/a) 29 (25) is the same ay.

FIG. 5. Inly? plotted as a

function of mean scaled widtly
for different numbers of channels:
(@ M=6; (b) M=8; (0 M
=40; (d) M=400. (y?) was ob-
tained from the same data for
Gj;(E=0) as(y) in Fig. 4. The
naive averaging predictiofsolid
line) is compared to the prediction
by supersymmetry methddotted
line). The error bars in caseg)
and (d) were computed based on
the observed variance gf. Error
bars for case&a) and(b) are omit-
ted, as I bars would misrepre-
sent the confidence intervals. In-
deed, the standard deviation in
case(a) do not exist.
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N
N
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FIG. 6. Relative variance of
power as a function of mean

Relative variance
Relative variance

0 0 scaled widthy for different num-
2 4 6 8 10 2 4 6 8 10 bers of channels(a) M=6; (b)
£ X M=8; (c) M=40; (d) M=400.

(e) (d) The results of naive averaging

(solid line) consistently underesti-
mate the results by the supersym-
metry methoddotted ling.

Relative variance
Relative variance

The averaging performed in Ref12] for the uniformly  tent with numerical results, because its assumptigi{sdfs-
damped GOE system led to the dependence of the firgtibution of resonance widths and decoupled uncorrelated
two moments of the transmitted ultrasonic power on aGaussian eigenmode amplitugiésilow from the first order
single structural parameter, the modal overlah M was  perturbation theory, valid for small scaled resonance width.
defined in Ref.[12] in terms of the average imaginary However, because thg? distribution reduces to the exact
part of the eigenfrequency, and the modal densityM distribution for the case of uniform damping or in the limit of
=27(lm w,)(IN/dw). We see that the modal overlap may a large number of weak channels, the naive theory is accu-
be identified withy. rate in this limit, for all values of scaled level width.

(y) and(y?) as predicted by supersymmetric calculation Taking int(_) account t_he growing interes_,t in microwave
[from Eq. (12)] and by “naive” averaging[Egs. (24) and  esonators with broken time-reversal chaotic dynarfies,
(25)] are compared in Fig. 4 and Fig. 5 with numerical re- it is possible that the statistics of point-to-point transmitted
sults for several different values b andy. The prediction POWer in systems of that type will soon be checked experi-

by the supersymmetry method agrees with the numerical rgpentally. In a separate publication we will extend the present

sults. In contrast, the results of the “naive” averaging under-.resmf[S to the case of systems with pr eserved time-reversal
' variance[25]. All qualitative conclusions of the present

estimate both first and second moments of the power, exce .
P esearch hold for those systems as well. The analytical re-

for very largeM, close to the uniform damping case. ; .

Finally, in connection with discussion of Ref2] we sults for the power variance are guite cumpersomg and. can
present the comparison of the relative varian¢g?Y/(y)?2 only be obtained by employing the symbolic manlpula.tl_on
" 1) of power in Fig. 6, and compare the SupersymmetricoaqkageEPlceRAss[ZG]. Let us note that even qlrect ver|f|T
and naive predictions. cation _of the equivalence of the resu_lts obtameq by naive

averaging to those for the case of uniform damping turned
out to be a nontrivial exercise.
IV. CONCLUSIONS Finally, we would like to mention that various statistical
. ) o ] aspects of quantum chaotic scattering in systems with inter-

We investigated the statistical behavior of the powerng| dissipation and decay have recently attracted consider-
transmitted in a closed RMT system with internal dissipa-aple attentior{27—29. Our consideration has some overlap
tion, or an open RMT system coupled to the exterior via ayjth the scope of these papers in the model studied and the

finite number of equally strong channels. Using the supermethods exploited, but not directly in the quantities investi-
symmetry method for systems with broken time-reversal ingated.

variance, we derived an expression for the probability distri-

bution function for thi_s quantit_y _and studied its first two ACKNOWLEDGMENT
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APPENDIX A: EVALUATION OF THE SUPERINTEGRAL

+imvyQA |exp[—iemvN StrQA}

The result of “Gaussian” integration in E6) has to be

simplified. To bring the integrand into a form convenient for 142 ot 42| M

saddle point integration, we use the series of identities for the _ | ZTETYYR2TY exp{—2e N StiA;— )}
supermatrixf = LY L2 (L2=1,) 1+2mvyh+y°

~_ - _ - -1 g+r|\M
f=-EL®Iy-Raly-iAl=[Iy®l,~iTe (A& 9)]6, =\ g7, exp{—2e mvN StiA 1 —\,)}, (A4)

T l=6"1,2Iy- (A6 Heil']?
whereg= (1/y+ y)/(27v),

_ sl N -1y @i T K
o2, (e Heiry, (A Quapo=ua(1— a* af2) (1+ B* BI2) — o* By}
where® = —El,— R was introduced. The supermatfix* is Qo1pp=p} (1—a* al2)(1+ B* BI2)+ aB* u,,

diagonal ini andj, and thus

Qu2p6Q21pb= | 1a|*+ | 1l ?a* B* aB+| pol*a* B* a B
+|pa|?(B* B—a* a)
el i1 42

bb__ | 1/Zfbb; 1/2 —_
FPP=LTPLE Taapn, Fa1pb = G12pp821pb -

Substituting Sdetf ~*=exp{—StrInf} into the result of
Gaussian integration with respect to the supervector compo-

nents, and considering — ||| o] B2 S o g, (A5)
<T“>H=(n!)*2j [dRI(S 2B a1py) "Sdetf and the integration measure was defined as
N * *
Xexp‘ ~ 5 SUR?+isN SRA |, (A2) do= da”dp” dadpd,dhzddid e,
[27(\1—\p)]?

we separated the terms in the exponent according to their o o )
order inN and obtained Eq(8): Substituting Eqs(A4) and(A5) we proceed with integration

with respect to Grassman variables. First, we need to expand
1 the & function, retaining only the terms of zero and maxi-
L[R]= ESWR2+SU|”@7 mum order in these variables[4,21,29. Setting
Q1256Q21pp= — 1+ A7+ 2, we expand thes function,

SL=ieNSrRA—StrinIy—iT®(AG 1]

S(v— 0OPPORD) = S(v+ 1—\2— 7
_isNSURA-MStril,—iyAe-1].  (ag O QuRa)Tel t-2)

=8(y+1-AD)—[(y+1—\?
The last identity was proved by expanding the logarithm into v -loaly V

the seriegsee Ref[4]). + 80 (y+1-ADH(1—-A2)J(N2=1\3)
After the Gaussian integration around the saddle point in .
Eq. (A2) the probability distribution function for the scaled Xa”prapt .-
power is expressed as an integral over the manifold formed d 42
by supermatriceQ=% A T: =8(y+1-\))+ & +yp) S(y+1-13)
y
Ply)= f [dQ]o(Y— Q12pQ21pp) Y(Q). Xa*B*af+ -,

Q is parametrized by four commuting variables where we used the fact that the argument af faunction is
N1,Ap,u1, 4, and four anticommutingy,@*,8,8* [4,21].  linear iny (z and 1-\2), in order to be able to take the
Hereh;e (1), Ape (—1,1), and|uq|?=\5—1, |u,/?=1 differential operator out of the integral. Then, we calculate
—)\3. We can also introduce another set of variables, accordthe integral overp,, ¢,, and the Grassman variables,
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d2 o 1 wheree=2¢7vN and we have used
P(y)= 5(Y)+ y )f d)\lf dro6(y+1
1 -1 M
g+)\2 2
[dQlexpl e =N} G| Ay+1-AD=a(y)
_)\Z)ﬁexp{—e()\ -\ )}(g+)\2 "
VIS WL 22 g+ N, for the “Efetov-Wegner” term[4,22]. Integration with re-
spect to\ ; is simple because of the presence of éhkinc-
(AB) tion:
|
d? )\ exp{—ey1l+y}o V1+y+
Ply)=a(y) y L) o[ a2 eXp{f’\z}(QH\z)M
dys) 2J1+y(g+V1+y) 21+
=0o(y)+ d+ d2 6(y)S(y).
=oly dy y y)Ssty
|
Using the propertys(y)=—yé’(y), we arrive at S)- -1 jl (g+A )M N
SRR AR AL VR R
Py) = 5(y) + ()Y 51 >+(d+ dz)su 1 '
y)=8(y)+ 8(y)y 5By +| —— +y— | F(y). J
d d 2 (g+N)Md\,.
y y dy A7) 2\/yT(g+\/yT)M

(A8)

The second term in the above equation can be evaluated
immediately, while for the first one we can use an identity:

Equation(A7) completes the calculation of probability dis-
tribution function for the scaled power. This equation yields
Eq. (11) upon substitution of lim_,oy(d/dy)§(y)=—1.

Finally, we sete=0 and derive Eq(12). We note that the

M
integral inF(y) is a table integral: (gH\Z)M:mE:o (g+\/m)m()\2
d d? _NFrQMem_ T
P(y)= ( dy yd_) y+1) m(M—m)! "
- - We integrate each term in EGA8) separately, and after
(g+DHM H(g+1)—(g—1)M H(g—1) the first differentiation of the result with respect yp the
(M+1)(g+Jy+1)M+1 ’ series can be summed back, so that the remaining procedure

becomes straightforward and leads to Ep).

APPENDIX B: CALCULATION OF THE POWER

M+1IM+2— VARIANCE

gty +l In this appendix we demonstrate the intermediate steps

leading to Eqs(20), (24), and(25). We start with the modal
Thus, it is possible to apply a differential operator to obtainexpansion fofT? without making an assumption about uni-
the final form of P(y) for this case. However, we notice that form damping:

f(u)=,F,

r, r mx, m
i U

x| kx| Kk
yz(ﬂ-y)‘l: E u; U u ]- U; U U; U -
r,m,|,k r |£r E_Em+|’ym E— E|_|£| E— Ek‘HYk

(B1)

Absence of correlation between different eigenmodes produces the following result for the varignce of
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(JufI*y(lus | (U2 ul 12 ul]2)(|ui]?)
2 4_ i j j
YT = e R EiL) A B E-Brig)
(i u 2P ujl?)

7 (E-E—i{)(E-E+i{)(E-E—i{)(E-E+i{)’

+

(B2)

Next, we replace summation ovEf andE, with integra-  where T is the average resonance width afi@M) is a

tion (X,—Nv[dE;) and take into account the correlation Gamma function. Starting with Eq21) we averagey over
between the GUE elgenvalues In EBZ) by Introducmg the the e|genmodes and e|genenerg|es to get
factor 1-Y,[7#Nv(E,—E))] [1]:

ey Nl f dx W) (meP=NluB? 2, (B6)
(WV)4 - ( _lgr)z(x""igr)z . . .
which becomes Eq(24) upon integration ovep({;). We
Z(NV)2<|U|2>4J Jw [1—-Y,(wNvz)]dxdz indicate this averaging by an overbar:
()t el e (P4 () (x=2)*+ (] _ M
2_ 2\2 — 2 2
(NV)2<|U|2>4J» f [1 Yz(WNVZ)]dXdZ <y>(7TV) NV<|U| > <| | > -1
(mv)* Jew)en (x=ig)2(x—z+ig)?

To evaluate the second moment of the power we integrate
(B3)  overx, and then ovet, and(; in Eq. (B3):

wherex=E—E,, z=E,—E,, and the Dyson two-level cor-
relation function for the GUE i¥,(£) = (sin&/¢).
Integration overx andz in Eg. (B3) for the case of uni-

<y2><w>4=Nv<|u|4>2§—72+2<Nv>2<|u|2>“l
form damping, = ¢,=¢ yields Eq.(20):

r

, Nu([u|)? = IZL"’QJ” [1_Y2(7TNVZ)]dZ. (87)
(y)= Tt 28 2.4 2+ (4 + )2
2(Nv)2<|u|2)4 L+ (= [1-Ya(mNvz)]dz For the remaining integral with respect min 1 it is
2 d J convenient to use the Fourier transform¥gf(¢), which has
(7v) 2404, z +(§ +§|) the form
=(lu |4)2 +(Ju |2>4 v ) f:yz(g)exp[zwigq}dgzl—|q|, la|<1,
><[l+8(Nv)277282—exp[—4Nv778}—4NV778], 0, |g|=1,
(B4)

I T gr+§| |Q|

upon substituting |u|*)/(|u|?)?=2 (as is the case for com- I= 4.7 1= _|exp—Nv({+¢)ida. (B8)

plex Gaussian random numbgend(|u|?)=1/N.

In the case of a finite numbevl of weak dampers The average ovet, and ¢, is now straightforward. Fi-
=0), the ensemble averaging includes an integration over ﬁally substituting the result into EqB7), and taking into
distribution of widths, given by1,8]: account(|u|*)/(Ju|??=2, we obtain the second moment in

M—1 its closed form[Eqg. (25)]. The derivation presented above
gr gr h h 1 d 1 d I
or expl —M 2=} (B5)  assumes that the resonance widthand eigenmodes’ are
r r statistically independent.
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