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Statistics of transmitted power in multichannel dissipative ergodic structures
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We use the random matrix theory~RMT! to study the probability distribution function and moments of the
wave power transmitted inside systems with ergodic wave motion. The results describe either open multichan-
nel systems or their closed counterparts with local-in-space internal dissipation. We concentrate on the regime
of broken time-reversal invariance and employ two different analytical approaches: the exact supersymmetry
method and a simpler technique that uses RMT eigenstatistics for closed nondissipative systems as an input.
The results of the supersymmetric method were confirmed by numerical simulation. The simpler method is
found to be adequate for closed systems with uniform dissipation, or in the limit of a large number of weak
local dampers.
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I. INTRODUCTION

Transport through open chaotic systems is often view
as a scattering process. Standard examples of systems o
kind are compound nuclei, mesoscopic quantum dots
wires, microwave cavities, and acoustic or ultrasonic bod
@1–12# Incident waves are introduced into a disordered
irregularly shaped part of the structure via channels, e
waveguides, or infinitely long ideal leads. Assuming neg
gible dissipation, transport properties are obtained by re
ing incident and outgoing wave fields in terms of the unita
scattering matrixS. If internal dissipation is not negligible, i
can be simulated by the action of additional open chann
@9#. This is the case, for example, with microwave cavit
where nonperfectly reflecting walls cause loss of wave
ergy or with ultrasonic solids where internal friction acts
the bulk @8,9,12#.

The scattering model thus applies to open systems b
with and without internal dissipation. The scattering a
proach provides a useful tool for statistical characterizat
of chaotic transport. Assuming the wave dynamics inside
system to be ergodic so that the entire phase space o
system is explored@2–6#, the scattering approach is com
bined with a statistical analysis based on random ma
theory ~RMT!. For systems without losses, one can ma
assumptions on the statistics of theSmatrix @2,11#. An alter-
native method uses a random matrix assumption on the l
of the wave equation associated with the closed nondiss
tive structure. Here the basic object is the Green funct
~resolvent! related to that wave equation, and the meth
works equally well in both open and closed, dissipative a
nondissipative complex structures@1–10,12#. Matrices from
a random matrix ensemble then replace the wave equat
linear differential operator, and the problem of construct
various moments of the transport characteristics is expre
in terms of ensemble averages of the products of the re
vents. Transport characteristics calculated in that way
known, under certain conditions, to describe the results
experimental measurements in systems with ergodic w
motion @1–6#.

In this paper we are interested in characterizing the w
1063-651X/2003/68~1!/016204~12!/$20.00 68 0162
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powerT transmitted between a source at sitei and a receiver
at sitej in a closed system with internal losses. The statis
of T are potentially useful for studies of power transmissi
in complex reverberant structures@12–14#, where both the
mean power and the magnitude of its fluctuations away fr
the mean are important. In particular, we wish to calcul
the averageT and T2 with the ultimate goal of comparing
with measurements such as those of Ref.@12#. The complex
amplitude of the transmitted wave is simply proportional
the off-diagonal matrix element of the resolvent:G(E)
[@EI1 i«I 2H1 iG#21. HereH corresponds to the Hamil
tonian of the closed nondissipative chaotic structure. T
matrix G describes coupling to external channels or inter
local-in-space losses,I is the identity matrix, the paramete
«.0 describes uniform dissipation, andE is the spectral
variable. The quantity of prime interest isT5uGi j (E)u2,
iÞ j , i.e., the product of retarded and advanced Green fu
tions ~propagators!: Gji

R(E)[@EI1 i«I 2H1 iG# j i
21 and Gi j

A

5„Gji
R(E)…* , respectively. Except for the slowly varyin

factors of receiver gain and source strength, the quan
T represents the ultrasonic power of Ref.@12#; see also
@10–13#.

The fluctuations inT, as measured in Ref.@12#, were in
only modest agreement with theoretical predictions based
a simplified version of the random matrix approach. The m
ments ofT were calculated there using a naive form of e
semble averaging@8,12–14#. This relatively simple approach
uses statistical assumptions for eigenfunctions and the
parts of eigenvalues of the open system identical to thos
the corresponding closed system. As will be seen later, s
an assumption is strictly justified only for a special case
uniform dissipation. In a more general situation this a
proach fails. A proper treatment calls for a more elabor
technique, which we outline and present below.

When losses are negligible the systems discussed in R
@12–14# are invariant under time reversal. The appropria
choice for the corresponding random matrixH should there-
fore be a real symmetric matrix taken, e.g., from the Gau
ian orthogonal ensemble~GOE!. In principle, the powerful
methods of ensemble averaging we employ here can be
for such an ensemble, but the calculations are technic
©2003 The American Physical Society04-1
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involved and will be presented in a separate publication.
Here we address ourselves to the somewhat simpler

in which H is complex Hermitian, generic for systems wi
broken time-reversal invariance. Correspondingly,H is
treated as a HermitianN3N matrix consisting of uncorre
lated centered random complex numbers, their variances
fined by ^Hi j Hlm* &5(l2/N)d i l d jm with angular brackets in-
dicating ensemble averaging. Such anH is a member of the
Gaussian unitary ensemble~GUE! of random matrices@1#.
Although our present results on the statistics ofT are not
directly applicable to the time-reversal invariant systems d
cussed in@12–14#, they may elucidate the discrepanci
found in Ref. @12# between measurements and the pred
tions of the ‘‘naive’’ averaging. They also develop and illu
trate the mathematical methods which will be used fo
proper nonperturbative analysis of the time-revers
invariant problem. The present calculations are also relev
for scattering systems with broken time-reversal invaria
as exemplified in certain chaotic billiards@8#, optical and
semiconductor superlattices@15#, and quantum graphs@16#.
In fact, our results on the distribution of theoff-diagonal
elements of the resolvent extend earlier studies concentr
on diagonal entries for the same quantity~see@17,18# and
references therein!. Let us finally mention that there exists
clear analogy between our research and that presented i
paper@19# ~see also the review@20#!. However, the mode
considered in@19,20# did not take local dampers into ac
count, but rather addressed effects of Anderson localizat

The damping matrixG is in general Hermitian positive
semidefinite. In our model there is no loss of generality
assuming it to be diagonal. Indeed, in view of the rotatio
invariance of the Gaussian unitary ensemb
H°UHU21(U215U†), we can always select a basis th
diagonalizes G, bringing it into the form G
5diag$g,g, . . . ,g,0, . . . ,0%. The numberM,N of nonzero
entries can be interpreted either as a number of equiva
open channels in the scattering system@3,4,9# or as a number
of equivalent localized ‘‘dampers’’ in a closed system w
losses. While we take all theg ’s to be equal, the expression
we develop are easily generalized to the case of vary
damper strengths. It should be stressed that in genera
matricesG andH do not commute, and therefore the eige
vectors and eigenvalues of the ‘‘effective non-Hermiti
Hamiltonian’’ H2 iG are not trivially related to those ofH.
This very fact makes the naive averaging incorrect. In c
trast, the termi«I interpreted as the ‘‘uniform damping’’ pre
serves eigenvectors ofH and just adds a uniform shifti« to
all eigenvalues.

The presence of anN3N random HamiltonianH in the
expression for the resolvent matrixG enables us to carry ou
the ensemble averaging exactly using the supersymm
method @3,4,20–23#. Application of this nonperturbative
technique leads to an expression for the entire probab
distribution function ofT. We present the corresponding de
vation in Sec. II. In Sec. III, we compare the results for t
first two moments ofT as obtained using the supersymme
method and the methods of Refs.@12–14#. The results are
then verified numerically by direct simulation of the mod
Section IV contains conclusions.
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II. PROBABILITY DISTRIBUTION FUNCTION OF THE
POWER. SUPERSYMMETRIC CALCULATION

In the previous section we defined the powerT as a prod-
uct of advanced and retarded Green functionsGi j . Our goal
is to compute the statistics, i.e., ensemble avera
^T&H , ^T2&H , etc., where subscriptH designates averagin
with the Gaussian weight exp$2(N/2l2)Tr H†H%. At the first
stage of the supersymmetric calculation we make use of
following identities for the inverse propagatorDi j 5@E1 i«
2H1 iG# i j @3,4,20–23#:

detDb
215E @dS†#@dS#exp$ iLb~E,S!%,

detDf5~21!NE @dx* #@dx#exp$ iLf~E,x!%.

Here we introduced 2N-dimensional vectorsST5(S1
T ,S2

T)
and xT5(x1

T ,x2
T), consisting of complex commuting o

bosonic ~b! variables and anticommuting or fermionic~f !
variables, respectively. Db5diag$D,2D†% and Df
5diag$D,D†% are 2N32N block diagonal matrices, and
Lb(E,S)5S†DbS, Lf(E,x)5x†Dfx. The negative sign of
Db

22 is necessary for convergence of the integrals in w
follows. Differentiating the first equality with respect toDb ji

11

and Dbi j
22 , and then combining the result with the seco

equality, we obtain

T5Di j
21Di j*

215E @dF†#@dF#S1 j* S1iS2i* S2 jexp$ iL~E,F!%,

~1!

where the integration involves four-component supervec
FT5(ST,xT), and where L(E,S)5Lb(E,S)1Lf(E,x)
5F†DF, D5diag$Db ,Df% @3,4,20–23#. Because the ran
dom matrixH is in the exponent,T is now suitable for en-
semble averaging.

In a similar fashion, employing the Wick theorem one c
verify the following formula necessary for the calculation
an arbitrary moment of transmitted power^Tn&H :

Tn5~n! !22E @dF†#@dF#S1 j* nS1i
n S2i*

nS2 j
n exp$ iL~E,F!%

5^S1 j* nS1i
n S2i*

nS2 j
n &F . ~2!

The shorthand notation̂•••&F has been introduced for th
‘‘Gaussian’’ integration over the supervector componen
Hereafter we use the more convenient@1,2# ~‘‘retarded-
advanced’’! block notation for supervectors and superma
ces ~see, for example, Ref.@4#!. With the supervectorCT

5(S1
T ,x1

T ,S2
T ,x2

T) and the 434 supermatricesL5diag$1,1,
21,1%, L5diag$1,1,21,21%, the exponent in the integran
reads:

L~E,C!5EC†~ I ^ L !C1 iC†~G ^ LL !C2C†~H ^ L !C

1 i«C†~ I ^ LL !C,

and Eq.~2! becomes
4-2
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Tn5~n! !22^Fn@C#&C , F@C#5S1 j* S1iS2i* S2 j . ~3!

The ensemble averaging can now be performed with
aid of the identities@4#

^exp$ iC†~H ^ L !C%&H5expH 2
1

2N
StrA2J ,

Apq
(kl)5Lkk,pp

1/2 (
i 51

N

~C i !k
p~C i

†! l
qLll ,qq

1/2 ,

StrAL5C†~ I ^ L1/2LL1/2!C5C†~ I ^ LL !C,

where we have setl51 and introduced a 434 supermatrix
A and Str stands for the supertrace. Thus

^Tn&H5~n! !22E @dC†#@dC#Fn@C#expH iEC†~ I ^ L !C

2C†~G ^ LL !C2
1

2N
StrA22« StrALJ , ~4!

wherek,l distinguish between retarded and advanced~1 and
2! supermatrix block indices andp,q are equal tob or f
@4,21#. The next stages of the supersymmetric procedure
clude @1,3,4,20–23# ~1! the Hubbard-Stratonovich transfo
mation, which removes quartic~in C) term in the exponen-
tial; ~2! C variable integration; and~3! evaluation of the
remaining integral using the saddle point approximation
the limit N→`. We have, after step 1,

^Tn&H5~n! !22E @dR#expH 2
N

2
StrR21 i«N StrRL

1 i StrRAJ E @dC†#@dC#Fn@C#exp$ i @EC†LC

1 iC†~G ^ LL !C#%. ~5!

Since StrRA5C†L1/2RL1/2C, for an arbitrary 434 super-
matrix R,

^Tn&H5~n! !22E @dR#expH 2
N

2
StrR21 i«N StrRLJ

3E @dC†#@dC#Fn@C#exp$2 iC†L1/2

3~2EI4^ I N2R^ I N2 iL ^ G!L1/2C%. ~6!

Using the Gaussian nature of the integral

E @dC†#@dC#exp$2 iC†f C%5Sdetf 21,

the following general relation can be derived similarly
Eq. ~3!:
01620
e

n-

n

E @dC†#@dC#@~C i !
b~C j

†!b~C i !
b~C j

†!b#nexp$2 iC†f C%

5~n! !2f 12,bbi j

21 f 21,bbji

21 Sdetf 21. ~7!

Setting f 5L1/2(2EI4^ I 2R^ I 2 iL ^ G)L1/2, we inte-
grate out the components ofC with the help of Eq.~7!:

^Tn&H5E @dR#Fn@G#exp$2NL@R#1dL%, ~8!

where

F@G#5G12,bb
21 G21,bb

21 ,G52EI42R,

L@R#5
1

2
StrR21Str ln~2EI42R!,

dL5 i«N StrRL2M Str ln@ I 42 igL~2EI42R!21#.

See Appendix A for the details.
^Tn&H is now written as an integral over the 434 super-

matrix R. The stationarity condition forL@R#, in the limit
of large N, yields a stationary pointRs , satisfying
Rs51/(2EI42Rs). The solution is not unique, it is a sadd
manifold in a space of 434 supermatrices, spanne
by ‘‘pseudounitary’’ supermatrices T:Rs52EI4/2
1 ipnT21LT52EI4/22pnQ, wheren5A42E2/(2p) is
Wigner’s semicircular mean density of eigenvalues~GUE,
l51). See Refs.@4,21# for the explicit form of the super-
matrix Q.

After integrating out local fluctuations over directionsR
orthogonal to the manifold of stationary points~the proce-
dure is asymptotically exact for largeN) the remaining inte-
gration goes over the manifold parametrized byQ:

^Tn&H5~pn!2nE @dQ#~Q12,bbQ21,bb!
nSdet2MF I 41 i

E

2
gL

1 ipngQLGexp$2 i«pnN StrQL%. ~9!

The expression for thenth moment of power allows one
to find the entire distribution functionP(T) ~cf. @19–21#!:

P~T!5E @dQ#d„T2~pn!2Q12,bbQ21,bb…Y~Q!,

or, for the ‘‘scaled’’ powery5T/(pn)2,

P~y!5E @dQ#d~y2Q12,bbQ21,bb!Y~Q!, ~10!

where

Y~Q!5Sdet2MF I 41 i
E

2
gL1 ipngQLGexp

3$2 i«pnN StrQL%.

Evaluation of the superintegral in Eq.~10! is presented in
Appendix A. The result reduces to
4-3
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P~y!5d~y!1S d

dy
1y

d2

dy2D E1

`

dl1E
21

1

dl2d~y112l1
2!

l1
22l2

2

~l12l2!2
exp$2e~l12l2!%S g1l2

g1l1
D M

5S d

dy
1y

d2

dy2D exp$2eA11y%

2A11y~g1A11y!ME21

1

dl2

A11y1l2

A11y2l2

exp$el2%~g1l2!M, ~11!

whereg5(1/g1g)/(2pn) ande52pnN«.
Setting the ‘‘uniform damping’’e to zero we were able to evaluate the remaining integral explicitly~see Appendix A for the

details! and Eq.~11! yielded

P~y!5
$~g21!M112~g11!M11%p11$~g11!M111~g21!M11%p2

8A~11y!5~g1A11y!M12
,

p15
g~y22!

~M11!
@g1~M12!A11y#2~y11!@21~M11!~y12!#, ~12!

p252~y11!@g1~M12!A11y#.
s

n
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Equations~11! and ~12! constitute the main result of thi
section.

At this point it is interesting to observe that Eq.~12! can
in fact be used to cover the case of uniform damping i
closed system:e.0, M50. For this we note that in the limi
g→0 ~i.e., g;1/2png→`) andM→` but gM;const the
factor (g1l2)M/(g1l1)M in the integrand of Eq.~11! is
converted to exp$2pngM(l22l1)%. Such a replacement i
equivalent to generating an effective uniform dampinge
52pngM . The fact that the large number of weakly op
channels~or weak local-in-space dampers! is essentially
equivalent to uniform damping is well known~see, e.g.,@4#!.
Performing the limitg→`,M→` while keeping the prod-
uct 2pngM5e finite, we find that the distribution Eq.~12!
is reduced to

P~y!5
exp$2eA11y%sinhe

4eA~11y!5

3@e2~y11!~y12!2~y22!~11eA11y!#

1
exp$2eA11y%coshe~11eA11y!

2A~11y!3
. ~13!

This distribution of transmitted power for systems with un
form damping is interesting and important on its own.

Let us consider now a few other regimes. For the wea
damped system (M is fixed,g@1), Eq.~12! can be approxi-
mated by

P~y!;
41y

4A~11y!5
1OS 1

g2D . ~14!

The asymptotic behavior ofP(y) in the limit y→` for
any M andg is given by
01620
a

y

P~y!;
~M11!

4y(M13)/2
$~g11!M112~g21!M11%

1OS 1

y(M14)/2D , ~15!

which shows that the moments^yn& exist only for n,(M
11)/2. At the same time, as follows from Eq.~11!, any
nonzeroe guarantees the existence of all moments. For la
y, the asymptotic forms of the probability distribution fun
tion at nonzeroe are

P~y!;
e sinhe

Ay
exp$2ey1/2%, ~16!

P~y!;
gMexp$2ey1/2%

y(M11)/2
, ~17!

for M50 and for finiteM, respectively.
Finally, we want to compare the results of this secti

with numerical solution of the model RMT problem. For th
goal we numerically generate an ensemble ofN3N Hermit-
ian random matricesH, typically choosing 1500 sample
from the ensemble andN51000. The entries of the matrixH
are constructed using a random number generator, w
^Hi j Hlm* &5(1/N)d i l d jm . To simulate the uniform damping
and the case of a finite number of local dampers we takG
5«I and G5diag$g,g, . . . ,g,0, . . . ,0% ~with M<N non-
zero entries!, respectively. Then, for all members of our e
semble we generate the off-diagonal elements of the re
vent matrix Gi j (E)5@EI1 iG2H#21, modeling the
response at sitei due to excitation at sitej, with E being the
spectral parameter.

We first consider the case of uniform damping:G5«I .
The modal densityn for such a system is approximated b
Wigner’s semicircular law:n5A42E2/(2p). Therefore, for
a fixed size of the matricesN and spectral variableE, we can
4-4
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explore the range ofe by changing«. For E50 the modal
density isn51/p and so we need not distinguish betweenT
and y. In Fig. 1, the numerically obtained histograms a
compared withP(y) ~Eq. ~11!! for several values ofe. We
see that numerical results correspond well with the theor
cal curves.

This procedure was repeated for the damping matrixG
5diag$g,g, . . . ,g,0, . . . ,0% with M nonzero entries, by
computingGi j (E50) for different combinations of param
etersM andg. The results are presented in Fig. 2. Again, t
predictions of the supersymmetry method agree well with
numerical results.

III. MOMENTS OF POWER

In this section we analyze the first two moments of pow
y using two different approaches, both based on the RM
These moments as obtained using the supersymmetric c
lation @Eqs. ~11! and ~12!# will be compared to those ob
tained using the naive approach. We first consider unifo
damping and thenMÞ0.

In the simpler, but inexact, approachGi j is constructed as
a modal sum,

Gi j ~E!5(
r

ui
ruj

r*

E2Er2 i z r
,

and then averaged using the eigenstatistics of the undam
GUE system. Hereur is the r th eigenmode and we call th
imaginary partz r of the eigenenergyEr the resonance width

We first consider the case whenz r is uniform,z r5«, for
all r @12#:

y~pn!25(
r

(
m

ui
ruj

r*

E2Er2 i«

ui
m* uj

m

E2Em1 i«
. ~18!

On averaging Eq.~18! over the eigenmodesur , and assum-
ing they are uncorrelated,^y& becomes

FIG. 1. Probability distribution function@Eq. ~11!# and histo-
grams of power for~a! e51.0, ~b! e52.0, ~c! e54.0, ~d! e56.0,
as obtained numerically. Data are scaled to unit area. For each
1500 samples ofuGi j (E)u2,iÞ j , were computed. Deviations from
theory show no particular trend and have magnitudes consis
with a priori known statistical fluctuations.
01620
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^y&~pn!25(
r

^uuu2&2

~E2Er2 i«!~E2Er1 i«!
.

The summation over the eigenenergiesEr is then replaced by
an integral (( r→Nn*dEr)

^y&5
^uuu2&2

~pn!2 E2`

1` ~Nn!dEr

~E2Er2 i«!~E2Er1 i«!
,

wheren5A42E2/(2p) is the GUE modal density. There
fore, in the uniform damping case, the naive procedure p
duces

^y&5pn
^uuu2&2

~pn!2

p

«
5N2^uuu2&2

2

2pnN«
5

2

e
, ~19!

where^uuu2& has been set to 1/N ~by normalization!.
The second moment of power is calculated in Appendix

by means of the same approach, and is given by

^y2&5
1

p3n3N3«3
1

1

4p4n4N4«4

3@118p2~Nn!2«22exp~24pNn«!#. ~20!

For the uniform damping case (z r5« for all modes!, ap-
plication of the results of Sec. II is especially straightfo

lot

nt

FIG. 2. Probability distribution function@Eq. ~12!# and histo-
grams of power for~a! M52,g52.16, ~b! M56,g52.16, ~c! M
540,g5400, ~d! M540,g540, ~e! M5400,g5400, ~f! M
5400,g540. Data are scaled to unit area. For each plot 15
samples ofuGi j (E)u2 were computed. We imposed the restrictio
iÞ j and i .M , j .M for the nonuniform damping case, to avo
‘‘recording’’ the response from damped sites or from the ‘‘sourc
site j, and to correspond to the assumptions in the theoretical an
sis. Note that for large values ofg @plots ~c! and ~e!#, P(y) is not
sensitive to eitherg or M @Eq. ~14!#. Deviations from theory show
no particular trend and have magnitudes consistent witha priori
known statistical fluctuations.
4-5
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ROZHKOV, FYODOROV, AND WEAVER PHYSICAL REVIEW E68, 016204 ~2003!
ward. As already discussed, Eq.~11! shows that in our mode
this case is realized either by settingM50 with finite e or by
letting M be large andg be small, such thatgM is finite. One
can use Eq.~13! for this purpose, but it is more convenient
start with the first part of Eq.~11!. SettingM50 and intro-
ducing

f5E
1

`

dl1E
21

1

dl2d~y112l1
2!

l1
22l2

2

~l12l2!2

3exp$2e~l12l2!%,

we integrate by parts in Eq.~11!:

P~y!5d~y!1S d

dy
1y

d2

dy2D f,

^yn&5E
0

`

ynP~y!dy

52yn~nf1yfy8!u0
`1n2E

0

`

yn21fdy

5n2E
0

`

yn21fdy. ~21!

Integration with respect toy in Eq. ~21! eliminates thed
function, and gives

^y&5E
1

`

dl1E
21

1

dl2exp$2e~l12l2!%S l11l2

l12l2
D5

2

e
,

~22!

^y2&54E
0

`

yFdy5
4

e4
~12exp$22e%!1

8

e2 S 11
1

e D ,

~23!

which takes the same form as Eqs.~19! and ~20! upon sub-
stitution of 2pnN« for e. Thus, for uniform damping, the
‘‘naive’’ and supersymmetric methods agree, for both^y&
and^y2&. This is not unexpected, because uniform damp
with M50 leaves eigenstatistics identical to those of clos
systems, merely shifting all eigenenergies byi«. The results
~22! and ~23! can readily be reproduced by usingP(y) as
given by Eq.~13!. These moments are plotted in Fig. 3 t
gether with the results of numerical simulations. The fi
two moments ofy were obtained numerically, by invertin
matrix EI1 iG2H for each member of the ensemble. Mo
precisely, we computed the column vectorGi j (E) ( j is fixed,
i 51, . . . ,N) by solving the algebraic equations@EI1 iG
2H#Gi j 5d i j for a fixed value ofE. Repeating this proce
dure 1500 times and averaging over the ensemble ofH and
over theN21 values ofiÞ j , we obtained̂ y& and^y2& for
e51,2,4,6. As seen in Fig. 3, the correspondence is ex
lent.

Our next goal is to calculatêy& and^y2& for the system
with M equivalent dampers and without additional unifor
damping~i.e., with e50). For this problem the probability
01620
g
d

t

l-

distribution function of scaled power is given by Eq.~12!
and closed form expressions for the mean value ofy and its
variance are cumbersome. It is, therefore, reasonable to c
out the corresponding integrations numerically. In contra
the naive averaging, which now also includes integrat
over the resonance widthsz r , distributed@1,8# according to
a x2 distribution

pS z r

Ḡ
D 5

M M

G~M ! S z r

Ḡ
D M21

expH 2M
z r

Ḡ
J ,

whereḠ is the mean resonance width, produces a relativ
compact answer for the statistics ofy ~see Appendix B!:

^y&~pn!25~pn!2
2

eM

M

M21
, ~24!

^y2&5
4M2

~M22!~M21!eM
2

f ~eM ,M !,

f ~eM ,M !521
4M ~M21!

~M23!eM
2

M ~4MeM24eM2M !

~2M23!eM
2

2
~eM1M !4

M2~2M23!eM
2 S 11

eM

M D 422M

, ~25!

whereeM52pnNḠ. We note that thex2 distribution forz r

is strictly correct only for the case ofḠ much less than the
mean level distance. It does, however, correspond well w
the actual distribution@4# for more arbitrary values ofḠ, as
long asM is large.

In order to compare Eqs.~24! and ~25! to corresponding
results obtained by numerical integration of Eq.~12!, it is
necessary to establish howḠ is related to the parameter

FIG. 3. ~a! ln^y& and ~b! ln^y2& plotted as functions of the pa
rametere for the case of uniform damping. The solid lines repres
theoretical predictions@Eqs.~19! and~20!#. The 1s error bars were
computed based on the observed variances ofy andy2.
4-6
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FIG. 4. ln̂ y& plotted as a func-

tion of mean scaled widthḡ for
different numbers of channels:~a!
M56; ~b! M58; ~c! M540; ~d!
M5400. Here we computed
Gi j (E50) (iÞ j and i .M , j
.M ) for fixed i and j and aver-
aged y over 1500 samples from
the ensemble ofH. The naive av-
eraging prediction~solid line! is
compared to the prediction by th
supersymmetry method~dotted
line!. The 1s error bars were
computed based on the observe
variance ofy.
i-
s

at

th

f

f

on-
d
nt
N, M , andg of the supersymmetric calculation. By defin
tion, the mean scaled resonance width in open system
proportional to the product of modal densityn and average
resonance widthḠ @4#. Under the condition of uniform
damping, the eigenmodes are equally damped, and the l
quantity is just equal to the individual damper strength«. In
general, the relationship is not that simple and is given by
Moldauer-Simonius formula@4#

ḡ52p
Ḡ

D
52NnpḠ5

1

2 (
a

M

ln
ga11

ga21
,

ga5
1

2pn S 1

ga
1gaD , ~26!
01620
is

ter

e

for the mean scaled resonance width, whereD51/nN is the
mean eigenenergy spacing andga is the coupling constant o
the ath channel. Note that our definitions ofḡ and eigen-
width z r are different by a factor of 2 from the notation o
Ref. @4#. For the uniformly damped system we find

ḡ.
1

2 (
a

N

ln
1/2pn«11

1/2pn«21
;2pn«N[e, ~27!

which was also shown at the end of Sec. II. Thus, we c
clude that our parametere coincides with the mean scale
resonance width in the limit of a large number of equivale
weak channels. Moreover, the parametereM in Eqs.~24! and
~25! is the same asḡ.
:

r

n

-
n

FIG. 5. ln̂ y2& plotted as a

function of mean scaled widthḡ
for different numbers of channels
~a! M56; ~b! M58; ~c! M
540; ~d! M5400. ^y2& was ob-
tained from the same data fo
Gi j (E50) as ^y& in Fig. 4. The
naive averaging prediction~solid
line! is compared to the prediction
by supersymmetry method~dotted
line!. The error bars in cases~c!
and ~d! were computed based o
the observed variance ofy2. Error
bars for cases~a! and~b! are omit-
ted, as 1s bars would misrepre-
sent the confidence intervals. In
deed, the standard deviation i
case~a! do not exist.
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FIG. 6. Relative variance of
power as a function of mean

scaled widthḡ for different num-
bers of channels:~a! M56; ~b!
M58; ~c! M540; ~d! M5400.
The results of naive averagin
~solid line! consistently underesti-
mate the results by the supersym
metry method~dotted line!.
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The averaging performed in Ref.@12# for the uniformly
damped GOE system led to the dependence of the
two moments of the transmitted ultrasonic power on
single structural parameter, the modal overlapM. M was
defined in Ref. @12# in terms of the average imaginar
part of the eigenfrequencyv r and the modal density,M
52p^Im v r&(]N/]v). We see that the modal overlap ma
be identified withḡ.

^y& and ^y2& as predicted by supersymmetric calculati
@from Eq. ~12!# and by ‘‘naive’’ averaging@Eqs. ~24! and
~25!# are compared in Fig. 4 and Fig. 5 with numerical r
sults for several different values ofM and ḡ. The prediction
by the supersymmetry method agrees with the numerica
sults. In contrast, the results of the ‘‘naive’’ averaging und
estimate both first and second moments of the power, ex
for very largeM, close to the uniform damping case.

Finally, in connection with discussion of Ref.@12# we
present the comparison of the relative variance (^y2&/^y&2

21) of power in Fig. 6, and compare the supersymme
and naive predictions.

IV. CONCLUSIONS

We investigated the statistical behavior of the pow
transmitted in a closed RMT system with internal dissip
tion, or an open RMT system coupled to the exterior via
finite number of equally strong channels. Using the sup
symmetry method for systems with broken time-reversal
variance, we derived an expression for the probability dis
bution function for this quantity and studied its first tw
moments. The theoretical predictions were compared to
results of numerical simulations on GUE systems with dis
pation, and to the results of a ‘‘naive’’ theory based on t
RMT eigenstatistics of a closed nondissipative system.
results of the supersymmetric calculation agree with the
merical data for the full range of parameters studied.

The naive averaging predictions are in general incon
01620
st
a

-

e-
-
pt

c

r
-
a
r-
-
i-

e
i-
e
e
-

s-

tent with numerical results, because its assumptions (x2 dis-
tribution of resonance widths and decoupled uncorrela
Gaussian eigenmode amplitudes! follow from the first order
perturbation theory, valid for small scaled resonance wid
However, because thex2 distribution reduces to the exac
distribution for the case of uniform damping or in the limit o
a large number of weak channels, the naive theory is ac
rate in this limit, for all values of scaled level width.

Taking into account the growing interest in microwa
resonators with broken time-reversal chaotic dynamics@24#,
it is possible that the statistics of point-to-point transmitt
power in systems of that type will soon be checked exp
mentally. In a separate publication we will extend the pres
results to the case of systems with preserved time-reve
invariance@25#. All qualitative conclusions of the presen
research hold for those systems as well. The analytical
sults for the power variance are quite cumbersome and
only be obtained by employing the symbolic manipulati
packageEPICGRASS@26#. Let us note that even direct verifi
cation of the equivalence of the results obtained by na
averaging to those for the case of uniform damping turn
out to be a nontrivial exercise.

Finally, we would like to mention that various statistic
aspects of quantum chaotic scattering in systems with in
nal dissipation and decay have recently attracted consi
able attention@27–29#. Our consideration has some overla
with the scope of these papers in the model studied and
methods exploited, but not directly in the quantities inves
gated.
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APPENDIX A: EVALUATION OF THE SUPERINTEGRAL

The result of ‘‘Gaussian’’ integration in Eq.~6! has to be
simplified. To bring the integrand into a form convenient f
saddle point integration, we use the series of identities for
supermatrixf 5L1/2f̃ L1/2 (L25I 4)

f̃ 52EI4^ I N2R^ I N2 iL ^ G5@ I N^ I 42 iG ^ ~LG21!#G,

f̃ 215G21@ I 4^ I N2~LG21! ^ iG#21

5G21(
k50

`

~ i !k@~LG21! ^ iG#k, ~A1!

whereG52EI42R was introduced. The supermatrixf̃ 21 is
diagonal ini and j, and thus

f bb5L1/2f̃ bbL1/2, f 12,bbii
f 21,bbj j

5G12,bbG21,bb .

SubstitutingSdetf 215exp$2Stri ln f̃% into the result of
Gaussian integration with respect to the supervector com
nents, and considering

^Tn&H5~n! !22E @dR#~G12,bb
21 G21,bb

21 !nSdetf 21

3expH 2
N

2
StrR21 i«N StrRLJ , ~A2!

we separated the terms in the exponent according to t
order inN and obtained Eq.~8!:

L@R#5
1

2
StrR21Str lnG,

dL5 i«N StrRL2Str ln@ I N2 iG ^ ~LG21!#

5 i«N StrRL2M Str ln@ I 42 igLG21#. ~A3!

The last identity was proved by expanding the logarithm i
the series~see Ref.@4#!.

After the Gaussian integration around the saddle poin
Eq. ~A2! the probability distribution function for the scale
power is expressed as an integral over the manifold form
by supermatricesQ5T21LT:

P~y!5E @dQ#d~y2Q12,bbQ21,bb!Y~Q!.

Q is parametrized by four commuting variable
l1 ,l2 ,m1 ,m2 and four anticommutinga,a* ,b,b* @4,21#.
Herel1P(1,̀ ), l2P(21,1), andum1u25l1

221, um2u251
2l2

2. We can also introduce another set of variables, acc
01620
-
t

e

o-

ir

o

n

d

d-

ing to l15coshu1, m15sinhu1exp$if1%, l25cosu2, m2
5sinu2exp$if2%, where u1P(0,̀ ), u2P(0,p), f1 ,f2
P(0,2p). Next we observe@4#

StrQL522i ~l12l2!, Y~Q!5Sdet 2MF I 41 i
E

2
gL

1 ipngQLGexp$2 i«pnN StrQL%

5S 112pngl21g2

112pngl11g2D M

exp$22«pnN Str~l12l2!%

5S g1l2

g1l1
D M

exp$22«pnN Str~l12l2!%, ~A4!

whereg5(1/g1g)/(2pn),

Q12,bb5m1~12a* a/2!~11b* b/2!2a* bm2* ,

Q21,bb5m1* ~12a* a/2!~11b* b/2!1ab* m2 ,

Q12,bbQ21,bb5um1u21um1u2a* b* ab1um2u2a* b* ab

1um1u2~b* b2a* a!

1um1uum2uei (f11f2)ab*

2um1uum2u2 i (f11f2)a* b, ~A5!

and the integration measure was defined as

dQ5
da* db* dadbdl1dl2df1df2

@2p~l12l2!#2
.

Substituting Eqs.~A4! and~A5! we proceed with integration
with respect to Grassman variables. First, we need to exp
the d function, retaining only the terms of zero and max
mum order in these variables@4,21,22#. Setting
Q12,bbQ21,bb5211l1

21z, we expand thed function,

d~y2Q12
bbQ21

bb!5d~y112l1
22z!

5d~y112l1
2!2@dz8~y112l1

2!

1dzz9 ~y112l1
2!~12l1

2!#~l1
22l2

2!

3a* b* ab1•••

5d~y112l1
2!1S d

dy
1y

d2

dy2D d~y112l1
2!

3a* b* ab1•••,

where we used the fact that the argument of ad function is
linear in y (z and 12l1

2), in order to be able to take th
differential operator out of the integral. Then, we calcula
the integral overf1 ,f2, and the Grassman variables,
4-9
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P~y!5d~y!1S d

dy
1y

d2

dy2D E1

`

dl1E
21

1

dl2d~y11

2l1
2!

l1
22l2

2

~l12l2!2
exp$2e~l12l2!%S g1l2

g1l1
D M

,

~A6!
-
ds

in
at

01620
wheree52«pnN and we have used

E @dQ#exp$2e~l12l2!%S g1l2

g1l1
D M

d~y112l1
2!5d~y!

for the ‘‘Efetov-Wegner’’ term@4,22#. Integration with re-
spect tol1 is simple because of the presence of thed func-
tion:
P~y!5d~y!1S d

dy
1y

d2

dy2D exp$2eA11y%u~y!

2A11y~g1A11y!ME21

1

dl2

A11y1l2

A11y2l2

exp$el2%~g1l2!M

5d~y!1S d

dy
1y

d2

dy2D u~y!F~y!.
ated
y:

r

dure

eps

i-
Using the propertyd(y)52yd8(y), we arrive at

P~y!5d~y!1d~y!y
d

dy
F~y!1S d

dy
1y

d2

dy2D F~y!.

~A7!

Equation~A7! completes the calculation of probability dis
tribution function for the scaled power. This equation yiel
Eq. ~11! upon substitution of limy→0y(d/dy)F(y)521.

Finally, we sete50 and derive Eq.~12!. We note that the
integral inF(y) is a table integral:

P~y!5S d

dy
1y

d2

dy2D
3

~g11!M11f ~g11!2~g21!M11f ~g21!

~M11!~g1Ay11!M11
,

f ~u!52F1S M11,1,M12,
u

g1Ay11
D .

Thus, it is possible to apply a differential operator to obta
the final form ofP(y) for this case. However, we notice th
F~y!5
21

~g1Ay11!ME21

1 ~g1l2!M

l22Ay11
dl2

2
1

2Ay11~g1Ay11!ME21

1

~g1l2!Mdl2 .

~A8!

The second term in the above equation can be evalu
immediately, while for the first one we can use an identit

~g1l2!M5 (
m50

M

~g1Ay11!m~l2

2Ay11!M2m
M !

m! ~M2m!!
.

We integrate each term in Eq.~A8! separately, and afte
the first differentiation of the result with respect toy, the
series can be summed back, so that the remaining proce
becomes straightforward and leads to Eq.~12!.

APPENDIX B: CALCULATION OF THE POWER
VARIANCE

In this appendix we demonstrate the intermediate st
leading to Eqs.~20!, ~24!, and~25!. We start with the modal
expansion forT2 without making an assumption about un
form damping:
y2~pn!45 (
r ,m,l ,k

ui
ruj

r*

E2Er2 i z r

ui
m* uj

m

E2Em1 igm

ui
l* uj

l

E2El2 i z l

ui
k* uj

k

E2Ek1 igk
. ~B1!

Absence of correlation between different eigenmodes produces the following result for the variance ofy:
4-10
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^y2&~pn!45(
r

^uui
r u4&^uuj

r u4&

~E2Er2 i z r !
2~E2Er1 i z r !

2
1(

rÞ l

^uui
r u2&^uuj

r u2&^uui
l u2&^uuj

l u2&

~E2Er2 i z r !
2~E2El1 i z l !

2

1(
rÞ l

^uui
r u2&^uuj

r u2&^uui
l u2&^uuj

l u2&
~E2Er2 i z r !~E2Er1 i z r !~E2El2 i z l !~E2El1 i z l !

. ~B2!
n

-

-

er

rate

in
e

Next, we replace summation overEr andEl with integra-
tion (( r→Nn*dEr) and take into account the correlatio
between the GUE eigenvalues in Eq.~B2! by introducing the
factor 12Y2@pNn(Er2El)# @1#:

^y2&5
Nn^uuu4&2

~pn!4 E
2`

` dx

~x2 i z r !
2~x1 i z r !

2

1
2~Nn!2^uuu2&4

~pn!4 E
2`

` E
2`

` @12Y2~pNnz!#dxdz

~x21z r !@~x2z!21z l
2#

1
~Nn!2^uuu2&4

~pn!4 E
2`

` E
2`

` @12Y2~pNnz!#dxdz

~x2 i z r !
2~x2z1 i z l !

2
,

~B3!

wherex5E2Er , z5Er2El , and the Dyson two-level cor
relation function for the GUE isY2(j)5(sinj/j)2.

Integration overx and z in Eq. ~B3! for the case of uni-
form dampingz r5z l5« yields Eq.~20!:

^y2&5
Nn^uuu4&2

~pn!4

p

2z r
3

1
2~Nn!2^uuu2&4

~pn!4

z r1z l

2z rz l
E

2`

` @12Y2~pNnz!#dz

z21~z r1z l !
2

5^uuu4&2
N

2~pn!3«3
1^uuu2&4

1

4~pn!4«4

3@118~Nn!2p2«22exp$24Nnp«%24Nnp«#,

~B4!

upon substitutinĝ uuu4&/^uuu2&252 ~as is the case for com
plex Gaussian random numbers! and ^uuu2&51/N.

In the case of a finite numberM of weak dampers (e
50), the ensemble averaging includes an integration ov
distribution of widths, given by@1,8#:

pS z r

Ḡ
D 5

M M

G~M ! S z r

Ḡ
D M21

expH 2M
z r

Ḡ
J , ~B5!
01620
a

where Ḡ is the average resonance width andG(M ) is a
Gamma function. Starting with Eq.~21! we averagey over
the eigenmodes and eigenenergies to get

^y&~pn!25Nn^uuu2&2
p

z r
, ~B6!

which becomes Eq.~24! upon integration overp(z r). We
indicate this averaging by an overbar:

^y&~pn!25Nn^uuu2&2
p

z r
5^uuu2&2

pNn

Ḡ

M

M21
.

To evaluate the second moment of the power we integ
over x, and then overz r andz l in Eq. ~B3!:

^y2&~pn!45Nn^uuu4&2
p

z r
3
12~Nn!2^uuu2&4I

I 5
z r1z l

2z rz l
E

2`

` @12Y2~pNnz!#dz

z21~z r1z l !
2

. ~B7!

For the remaining integral with respect toz in Ī it is
convenient to use the Fourier transform ofY2(j), which has
the form

b~q!5H E
2`

`

Y2~j!exp$2p i jq%dj512uqu, uqu<1,

0, uqu>1,

Ī 5
z r1z l

4z rz l
E

21

1 S 12
uqu
2p Dexp$2Nn~z r1z l !%dq. ~B8!

The average overz r and z l is now straightforward. Fi-
nally, substituting the result into Eq.~B7!, and taking into
account̂ uuu4&/^uuu2&252, we obtain the second moment
its closed form@Eq. ~25!#. The derivation presented abov
assumes that the resonance widthsz r and eigenmodesur are
statistically independent.
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